

ISSN: 2456-4427

Impact Factor: RJIF: 5.64
Jyotish 2025; 10(2): 175-178

© 2025 Jyotish

www.jyotishajournal.com

Received: 20-08-2025

Accepted: 25-09-2025

Deepa Bisht

Department of Mathematics,
Uttarakhand Open University
Haldwani, Uttarakhand, India

Govind Singh

Department of Mathematics,
Surajmal University, Kichha,
Uttarakhand

Interconnection between Vedic mathematics and ancient Indian astronomy

Deepa Bisht and Govind Singh

DOI: <https://www.doi.org/10.22271/24564427.2025.v10.i2c.287>

Abstract

This paper presents a historical and analytical study of the deep connections that existed between Vedic math Exploring the Mathematical Foundations of Ancient Indian Astronomy Through Vedic Knowledgebases and ancient Indian astronomy. A study of ancient texts such as Vedanga Jyotisha, Surya Siddhanta, and Aryabhata makes it clear that astronomical calculations were based not just on observation but on advanced mathematical principles. The sutras of Vedic mathematics — Urdhva-Tiryak, Nikhilam Navatashchararamam Dashatah, Anusamanya, and Sangamana-Vyavakalnabhyam — are deeply related to the mathematical processes used in ancient times for planetary positions, eclipse calculations, and almanac construction. This research shows that the computational efficiency and pattern-based structure of these formulas made quick mental calculations possible in astronomical calculations. Continuity of Vedic mathematical ideas is also visible in the works of Aryabhata, Brahmagupta, and Bhaskaracharya, which proves that Indian mathematics and astronomy developed as a unified tradition. The research results also indicate that the use of Vedic mathematics in modern education can make the concepts of astronomy simpler and more interesting. Thus, Vedic mathematics is not merely a method of quick calculation, but it embodies the scientific approach that led India towards accurate astronomical calculations.

Keywords: Vedic mathematics, ancient Indian astronomy, Vedanga Jyotisha, Surya Siddhanta, astronomical calculations, Aryabhata, trigonometry, Indian mathematical heritage

Introduction

Vedic mathematics is an ancient and remarkable system of Indian mathematics based on the Vedas. It is a method of calculation that allows us to solve numerical problems in a simple, fast, and accurate manner. The principles of Vedic mathematics are mainly derived from the "Ganita Vedanga" of the Atharvaveda. The word 'Vedic' means "knowledge derived from the Vedas," and 'Ganit' means "the science of calculation or measurement." Vedic Mathematics refers to a set of sixteen primary sutras (formulas) and thirteen sub-sutras that provide shortcuts for arithmetic, algebra, geometry, and calculus. While Tirthaji presented these methods as derived from ancient Vedic texts, historians and mathematicians debate the authenticity of these origins. Nevertheless, the techniques offer remarkably efficient mental calculation strategies. This paper aims to examine the historical context of Vedic Mathematics, provide examples of selected sutras in action, and assess their practicality in contemporary math education. The ancient Indian knowledge systems stand as remarkable contributions to world civilization, particularly in the domains of mathematics and astronomy. Among these, Vedic Mathematics and Ancient Indian Astronomy (Jyotisha) hold a distinguished place for their intellectual depth, scientific approach, and enduring legacy. While Vedic Mathematics is often recognized for its swift mental computation techniques derived from the Vedic texts, Ancient Indian Astronomy represents a sophisticated understanding of celestial phenomena, time-keeping, planetary motions, and cosmic cycles. A deeper scholarly inquiry reveals that these two fields are not isolated branches of knowledge, but rather interconnected disciplines that evolved together within the broader framework of Indic scientific thought.

Vedic Mathematics, rooted in the *Atharvaveda* and systematized in the 20th century by Jagadguru Śrī Bhāratī Kṛṣṇa Tīrthajī Maharaj, offers sixteen sutras and thirteen sub-sutras that enable simplified mathematical operations.

Corresponding Author:

Deepa Bisht

Department of Mathematics,
Uttarakhand Open University
Haldwani, Uttarakhand, India

These sutras reflect not only computational efficiency but also the inherent philosophical and symbolic patterns present in Vedic literature. On the other hand, Ancient Indian Astronomy, enriched through texts such as the *Vedāṅga Jyotiṣa*, *Sūrya Siddhānta*, *Āryabhaṭīya*, *Brahmasphuṭasiddhānta*, and works of scholars like Āryabhaṭa, Varāhamihira, and Brahmagupta, demonstrates a mathematically structured understanding of the universe. Astronomical observations, planetary calculations, and calendrical systems in ancient India relied heavily on mathematical concepts, many of which resonate with the principles later classified under Vedic Mathematics.

The interconnection between Vedic Mathematics and Ancient Indian Astronomy becomes apparent in their shared mathematical foundations, especially in areas such as arithmetic, algebra, geometry, trigonometry, factorization, cyclic patterns, and modular computations. Techniques similar to Vedic mathematical sutras can be traced in astronomical calculations, eclipse predictions, sine tables, and calendar construction used by ancient Indian astronomers. The integration of numerical patterns, the concept of periodicity, and the use of simplified mental algorithms enabled astronomers to perform complex computations long before the advent of modern mathematical tools.

Exploring the synergy between these two disciplines is academically significant for three reasons. First, it highlights the holistic and integrated nature of ancient Indian scientific tradition, where mathematics was not merely theoretical but deeply applied to astronomy, architecture, rituals, and daily life. Second, it provides insights into how computational techniques contributed to precision in astronomical models and time-keeping systems, thus influencing the cultural and scientific evolution of India. Third, this interrelationship opens avenues for re-evaluating ancient knowledge systems in the context of modern education, computational science, and interdisciplinary research.

Therefore, this research paper aims to examine the historical, mathematical, and conceptual interconnections between Vedic Mathematics and Ancient Indian Astronomy, with the objective of demonstrating how the two fields complemented and enriched each other. By analysing ancient texts, mathematical sutras, and astronomical treatises, this study seeks to uncover the shared principles, methodological parallels, and scientific innovations that reflect the intellectual unity of India's mathematical-astronomical heritage.

Literature Review

Bharati Krishna Tirthaji's *Vedic Mathematics* (1965)^[4] is the foundational text describing these sutras. Studies such as Williams (1998)^[1] have highlighted the pedagogical benefits of Vedic methods in improving arithmetic speed. Research by Kulkarni (2007)^[2] found that incorporating Vedic techniques increased students' confidence in mental calculations. However, works by historians like Pingree (1981)^[3, 7] question whether these methods genuinely trace back to the Vedic period or are modern reinterpretations. Few empirical studies have evaluated large-scale classroom outcomes, indicating a gap in systematic educational research.

A substantial body of literature exists on Vedic Mathematics and Ancient Indian Astronomy, yet research that explicitly bridges the two domains remains limited. This review synthesizes existing scholarship in three thematic areas: (i) foundations of Vedic Mathematics, (ii) historical and scientific development of Ancient Indian Astronomy, and (iii)

studies indicating conceptual or methodological interconnections between the two disciplines.

Early works on Vedic Mathematics focus primarily on the systematization presented by Jagadguru Śrī Bhāratī Kṛṣṇa Tīrtha Ji Maharaj (1965)^[4] in *Vedic Mathematics*, which introduced sixteen sutras and thirteen sub-sutras as mental strategies for arithmetic and algebraic computations. Subsequent scholars such as Williams (1999), Agrawal (2008), and Dutta (2015) expanded the pedagogical implications of Vedic Mathematics, emphasizing its efficiency, cognitive benefits, and applicability to modern mathematical education. Recent studies, including those by Kapur (2018) and Singh & Tripathi (2021), explore the algorithmic nature of Vedic sutras and their relevance for computational mathematics.

Research on Ancient Indian Astronomy is more extensive and historically grounded. Foundational texts such as *Vedāṅga Jyotiṣa* (c. 1200-800 BCE) laid the basis for astronomical calculations for ritual and calendrical purposes. Classical treatises *Āryabhaṭīya* by Āryabhata (499 CE), *Brahmasphuṭasiddhānta* by Brahmagupta (628 CE), and *Pañcasiddhāntikā* by Varāhamihira (6th century CE) demonstrate the application of arithmetic, algebra, trigonometry, and geometric reasoning in planetary motion, eclipse prediction, and time measurement. Historian-mathematicians such as Pingree (1978), Sarma (1994), and Shukla (2002) have analyzed the mathematical sophistication of ancient Indian astronomical models, highlighting the development of sine tables, interpolation techniques, and cyclic time concepts.

Only a few studies have attempted to articulate the relationship between mathematical techniques found in Vedic literature and those applied in ancient astronomy. Kak (1994) and Deshpande (2012) suggest that certain computational methods used in astronomical calculations mirror the mental strategies later articulated as Vedic sutras. Research by Subbarayappa (2008) and Kalyanaraman (2010) points toward a shared epistemological framework rooted in the Vedic worldview, where numerical patterns, cyclical reasoning, and symbolic interpretations form a common ground. More recently, interdisciplinary studies (Sharma, 2019; Rao & Iyer, 2022) acknowledge that examining common mathematical principles can yield insights into how computational efficiency supported astronomical accuracy.

Overall, while the literature on both domains is individually rich, a direct scholarly exploration of their interconnection is relatively unexplored, creating a distinct research gap. This study builds upon historical, mathematical, and interdisciplinary sources to bridge that gap by systematically examining their shared computational foundations and scientific integration.

Material And Methods

Research Design: This study adopts a qualitative, descriptive, and analytical research design. The research focuses on historical texts, mathematical principles, astronomical treatises, and scholarly interpretations to examine the interconnection between Vedic Mathematics and Ancient Indian Astronomy. A comparative analytical approach is used to identify conceptual and computational linkages between the two disciplines.

Source of Data: The study is based on secondary data, collected from ancient scriptures, published research

literature, historical documents, and academic sources. Data has been categorized into the following:

Primary/Ancient Textual Sources (Classical Material): *Vedas and Vedāṅga Jyotiṣa*:

The Vedas are the oldest and most authoritative scriptures of ancient Indian knowledge, composed in Sanskrit. They are considered the primary source of spiritual, philosophical, scientific, and mathematical wisdom in Indian civilization. The Vedic corpus comprises four major texts:

- i) **Rigveda:** Hymns praising cosmic forces and natural phenomena
- ii) **Yajurveda:** Ritual formulas for performing yajnas and ceremonies
- iii) **Samaveda:** Melodic chants and musical renditions of Vedic hymns
- iv) **Atharvaveda:** Knowledge related to daily life, healing, mathematics, cosmology, and mystical sciences

The Vedas are not only religious scriptures but also encode scientific thought, including early references to mathematics, astronomy, time measurement, geometry, and cosmology. Concepts such as large numbers, infinity (*ananta*), cosmic cycles (*kalpa*), and the motion of celestial bodies appear in Vedic hymns.

2. Vedāṅga Jyotiṣa: The Earliest Indian Text on Astronomy and Time-Keeping

The term *Vedāṅga* means “limbs of the Veda”, implying auxiliary sciences essential for understanding and practicing Vedic knowledge. Among the six *Vedāṅgas*, *Vedāṅga Jyotiṣa* is the one dedicated to astronomy and time-reckoning. *Vedāṅga Jyotiṣa*, traditionally attributed to Maharishi Lagadha, is one of the earliest known astronomical texts in the world, dated approximately between 1200-800 BCE. It provides systematic guidelines for determining auspicious timings (*muhūrta*), seasonal divisions, lunar and solar cycles, and the synchronization of lunar months with the solar year. The text reflects an early attempt to mathematically interpret celestial patterns, employing numerical calculations and cyclic concepts to understand the movement of the Sun, Moon, and Nakshatras (constellations).

There are six *Vedāṅga*

- i) **Shiksha:** Phonetics
- ii) **Vyakarana:** Grammar
- iii) **Nirukta:** Etymology
- iv) **Chandas:** Prosody/Metre
- v) **Kalpa:** Ritual procedures
- vi) **Jyotiṣa:** Astronomy and time measurement (our focus)

Sūrya Siddhānta and its Mathematical Foundations

The *Sūrya Siddhānta* is one of the most authoritative and influential astronomical treatises of ancient India, believed to have been composed between 4th-5th century CE, with earlier versions possibly dating back much further. It presents a comprehensive and sophisticated exposition of astronomical principles, planetary motions, time measurement, trigonometry, and geometry. The text reflects a highly developed mathematical framework, demonstrating that ancient Indian astronomers possessed remarkable computational accuracy long before similar advancements appeared in other civilizations.

One of the key contributions of the *Sūrya Siddhānta* is its mathematical treatment of celestial mechanics. It introduces concepts such as the Earth's revolution, planetary orbits,

eclipses, solstices, equinoxes, and the calculation of planetary positions using cyclic functions. The text employs advanced numerical techniques to determine the length of the year, the synodic and sidereal periods of planets, longitude calculations, and corrections for anomalies in planetary motion.

Role of Vedic Mathematics Sutras in Astronomical Computation:

Vedic Mathematics, as systematized by Jagadguru Swami Bharati Krishna Tirthaji in the early 20th century, comprises sixteen Sutras and thirteen Sub-Sutras that provide simplified methods for mathematical operations. While these Sutras are often applied to arithmetic and algebraic problems in modern pedagogy, many of their underlying principles reflect mathematical techniques that were essential for ancient Indian astronomical calculations. This suggests that the computational efficiency embodied in Vedic Mathematics is, in part, rooted in the practical needs of astronomical observations and timekeeping systems.

Ancient Indian astronomy relied heavily on precise numerical computation to determine planetary positions, nakshatra cycles, tithi calculations, eclipse prediction, and calendar formulation. These tasks required swift and accurate arithmetic, including multiplication, division, squaring, square roots, algebraic simplifications, and factorization. Several Vedic Mathematics Sutras directly align with these requirements:

- Urdhva-Tiryak Sutra (Vertically and Crosswise Method) enabled rapid multiplication needed for astronomical tables and planetary calculations.
- Nikhilam Sutra (All from 9 and the Last from 10) facilitated quick operations with numbers near base values (10, 100, 1000), useful for iterative approximations in planetary algorithms.
- Anurupyena (Proportionately) and Sankalana-Vyavakalanabhyam (By Addition and By Subtraction) reflect proportional and differential methods used in adjusting mean and true planetary positions.
- Shunyam Saamyasamuccaye (If the sum is the same, the sum is zero) and Paravartya Yojayet (Transpose and Apply) parallel algebraic manipulations needed in solving astronomical equations.

These Sutras reveal an inherent pattern-based, mental-calculation approach that would have been advantageous in an era when astronomical computations were performed manually. The ability to derive results quickly through mental or semi-oral methods aligns strongly with the computational practices found in texts such as the *Vedāṅga Jyotiṣa*, *Sūrya Siddhānta*, and later works of Aryabhata, Brahmagupta, and Bhaskara II.

Result and Discussion

The study reveals significant historical, conceptual, and methodological interconnections between Vedic Mathematics and Ancient Indian Astronomy. Analysis of primary texts such as the *Vedāṅga Jyotiṣa*, *Sūrya Siddhānta*, and *Āryabhaṭīya* indicates that mathematical techniques were not merely supportive tools but integral to the development of precise astronomical knowledge in ancient India. The findings confirm that the computational strategies later systematized as Vedic Mathematics have their roots in the mathematical methods originally designed for astronomical calculations. The research identifies that Vedic Mathematics Sutras such as Urdhva-Tiryak, Nikhilam, Anurupyena, and Sankalana-

Vyavakalanabhyam closely align with arithmetic and algebraic processes used in planetary computation, calendar formulation, and eclipse prediction. These Sutras offer simplified and pattern-based approaches which mirror the mental and cyclic computation techniques essential for ancient astronomical observations. Comparative analysis demonstrates that the use of base values, proportional adjustments, iterative corrections, and algebraic transformations was common in both ancient astronomy texts and Vedic Mathematics strategies.

Additionally, the study highlights that mathematical astronomy developed by scholars like Āryabhaṭa, Brahmagupta, and Bhaskara II exhibits conceptual continuity with Vedic computational methods. The progression from numerical astronomy in the Vedic period to advanced trigonometric and algebraic astronomy in the classical period shows a seamless evolution of mathematical thought rather than independent development.

Furthermore, findings illustrate that integrating Vedic Mathematics into the teaching of astronomy enhances comprehension of core concepts such as planetary motions, time cycles, and trigonometric calculations. This suggests strong potential for interdisciplinary pedagogy, where Vedic computational techniques can simplify complex astronomical concepts for modern learners.

Overall, the results support the central hypothesis of the research: Vedic Mathematics and Ancient Indian Astronomy are historically interlinked components of a unified knowledge tradition, and their combined study provides deeper insight into India's scientific heritage as well as valuable educational benefits for contemporary mathematics and astronomy learning.

"Nikhilam Navatashcaramam Dashatah"

(All from 9 and the last from 10)

Here we are given both caes:

i) Both Numbers Less Than Base (e.g., 100)

Example: 97×98

Base = 100

97 is 3 less than 100 \rightarrow (-3)

98 is 2 less than 100 \rightarrow (-2)

Now,

Left part: $97 - 2 = 95$ or $98 - 3 = 95$

Right part: $(-3) \times (-2) = 6$

Answer: 9506

ii) Both Numbers More Than Base (e.g. 100)

Example: 103×104

Base = 100

103 is 3 more than 100 \rightarrow (+3)

104 is 4 more than 100 \rightarrow (+4)

Left part: $103 + 4 = 107$ or $104 + 3 = 107$

Right part: $3 \times 4 = 12$

Final Answer = 10712

Conclusion

The present research establishes that Vedic Mathematics and Ancient Indian Astronomy are not independent streams of knowledge, but deeply interconnected components of India's scientific heritage. The review of classical texts such as the *Vedas*, *Vedāṅga Jyotiṣa*, *Sūrya Siddhānta*, and *Āryabhaṭīya* clearly reveals that the evolution of mathematical techniques in ancient India was greatly influenced by the need for accurate astronomical computation. The numerical methods later organized and popularized as Vedic Mathematics draw

from mathematical principles that were originally developed to address the challenges of time-keeping, celestial observations, planetary motion calculations, and calendar formulation. The study concludes that Vedic Mathematics is not merely a collection of shortcuts for rapid calculation; rather, it represents a refined and systematic approach to mathematics that emerged from centuries of intellectual engagement with astronomy. The intrinsic use of algebraic reasoning, cyclic patterns, proportional methods, and mental computation underscores a holistic worldview where knowledge was integrated rather than compartmentalized. This integration allowed ancient scholars to achieve remarkable precision in astronomical predictions long before the advent of modern instruments and computational technologies. The findings further indicate that incorporating Vedic Mathematics into modern astronomy education offers valuable pedagogical advantages. Its intuitive methods can simplify complex mathematical processes, making astronomical concepts more accessible to students and encouraging interdisciplinary learning. Therefore, understanding the synergy between Vedic Mathematics and ancient Indian astronomy not only enriches historical and cultural appreciation but also provides meaningful insights for enhancing contemporary teaching-learning practices in mathematics and astronomy.

In essence, this research reaffirms that the fusion of mathematical thought and astronomical inquiry in ancient India laid a strong foundation for scientific progress, and that revisiting this relationship can inspire innovative approaches in both research and education today.

Vedic Mathematics provides fast, engaging strategies for mental calculations and holds promise for enhancing math education. However, educators should present these techniques as complementary rather than alternatives to modern mathematical methods. Future research should focus on large-scale classroom trials, cross-cultural studies, and digital tools incorporating Vedic methods.

References

1. Williams KR. Discover Vedic Mathematics. Delhi: Inspiration Books; 1998.
2. Kulkarni S. Impact of Vedic Mathematics on arithmetic speed. International Journal of Mathematics Education. 2007.
3. Pingree D. History of mathematical sciences in India. Journal of the History of Science Society. 1981.
4. Tirthaji BK. Vedic Mathematics. Delhi: Motilal Banarsi Dass Publishers; 1965.
5. Abhyankar KD. Astro-Mathematics of Ancient India. Hyderabad: Universities Press; 2008.
6. Kak S. Babylonian and Indian astronomy: early connections. Indian Journal of History of Science. 1995;30.
7. Pingree D. History of Mathematical Astronomy in India. Providence (RI): Brown University Press; 1981.
8. Shukla KS, Sarma KV, editors. Aryabhatiya of Āryabhaṭa. New Delhi: Indian National Science Academy; 1976.
9. Mukherjee SR. Hindu Astronomy. Calcutta: University of Calcutta Press; 1997.